
Rule Hashing for Efficient Packet Classification
in Network Intrusion Detection

Atsushi Yoshioka, Shariful Hasan Shaikot, and Min Sik Kim
School of Electrical Engineering and Computer Science

Washington State University
Pullman, Washington 99164–2752, U.S.A.

Email:{ayoshiok, sshaikot, msk}@eecs.wsu.edu

Abstract—A rule-based intrusion detection system compares
the incoming packets against rule set in order to detect intrusion.
Unfortunately, it spends the majority of CPU time in packet
classification to search for rules that match each packet. A
common approach is to build a graph such as rule trees or
finite automata for a given rule set, and traverse it using a
packet as an input string. Because of the increasing number
of security threats and vulnerabilities, the number of rules often
exceeds thousands requiring more than hundreds of megabytes
of memory. Exploring such a huge graph becomes a major
bottleneck in high-speed networks since each packet incurs many
memory accesses with little locality. In this paper, we propose
rule hashing for fast packet classification in intrusion detection
systems. The rule hashing, combined with hierarchical rule trees,
saves memory and reduce the number of memory accesses
by allowing the whole working set to be accommodated in a
cache in most of the time, and thus improves response times in
finding matching rules. We implement our algorithm in Snort,
a popular open-source intrusion detection system. Experimental
results show that our implementation is faster than original Snort
to deal with the same real packet traces while consuming an order
of magnitude less memory.

I. INTRODUCTION

An intrusion detection system (IDS) is an important security
tool for network administrators to protect their networks. It
enables them to monitor the networks by inspecting packets
in real time and detecting malicious attacks. An IDS classifies
packets using a rule (or signature) database in order to deter-
mine whether packets are malicious. A common approach to
efficiently search for a matching rule is to build a graph such
as rule trees or finite automata for a given rule set and traverse
it using a packet as an input string. Because of the increasing
amount of traffic and threats, intrusion detection becomes
very resource-intensive; with today’s high-speed networks and
large rule sets, an IDS often exhausts CPU time and memory.
In particular, searching the rule database and finding rules
that match incoming packets consume the majority of CPU
time. For instance, open-source IDSs such as Snort [1] and
Bro [2] expend all the resources, both CPU time and memory,
and halt immediately when they are deployed under high-
speed network environment [3]. When constrained by lack of
CPU time, an IDS may allow malicious packets to enter the
network. Therefore, reducing CPU time consumption in packet
matching is crucial for overall intrusion detection performance.

In Snort, a rule database occupies most of memory space.

At first, Snort builds a tree structure called “rule tree” from
thousands of rules. Snort then creates index structures consist-
ing of indices, e.g. port numbers, and patterns of each rule.
These index structures are used to find matching rules fast
and efficiently. Depending on the protocol type of incoming
packets, which index structure is used to find matching rules
are determined. When a TCP or UDP packet arrives, Snort
checks the source and destination ports in the header. If a
matching rule is found in the index structures, Snort performs
pattern matching against the payload of the packet. If the
packet contains the pattern that Snort is looking for in its
payload, Snort then performs full packet inspection using
remaining fields of the matching rule stored in the rule tree.
However, there are also rules with wildcards in port fields, and
they are treated differently. Snort duplicates patterns of these
rules in multiple indices so that they can be found in O(1)
time, at the cost of more memory consumption.

In this paper, we propose Hash-Based Detection Engine
(HBDE) for fast and memory-efficient packet classification in
network intrusion detection. Our approach generates a hash
value using five protocol fields (source IP, destination IP,
source Port, destination Port, flow status) of each rule. Each
hash value is stored in a single hash table. When a packet
arrives, the same hash function is applied to the incoming
packet and the hash value generated from the packet is used to
search in the hash table for the matching rules. Our approach
searches for the matching rules multiple times against each
packet to cover all possibilities (wildcard rules). Since There
is no pattern duplication in the proposed approach, it saves
memory space and thus reduce the number of memory ac-
cesses to read a set of finite strings for string pattern matching.
Although it may need to perform string pattern matching
multiple times against one packet while Snort performs string
pattern matching at most twice per packet, we claim that
our proposed approach is fast because the hash table resides
most of the time in cache due to no pattern duplication.
We implement HBDE in Snort and compare its performance
with the original detection engine of Snort using real packet
traces. Experimental results validates our claim because our
implementation shows faster performance than original Snort
to deal with the same real packet traces while consuming an
order of magnitude less memory and incurring less processing
time.

978-1-4244-2390-3/08/$25.00 ©2008 IEEE 1
Authorized licensed use limited to: National Cheng Kung University. Downloaded on February 23,2010 at 08:39:03 EST from IEEE Xplore. Restrictions apply.

alert tcp $HOME_NET any
-> $EXTERNAL_NET any
(msg:"ATTACK-RESPONSES directory
listing"; flow:established;
content:"Volume SerialNumber";
classtype:bad-unknown; sid:1292;)

Fig. 1. Example of a Snort rule

The remainder of the paper is organized as follows. In
section II we review background of Snort and its performance
issue. In section III we describe the design and working proce-
dure of HBDE in detail. Experimental results are presented in
section IV. Other approaches to improve intrusion detection
system’s performance have been introduced in section V
before we conclude in section VI.

II. BACKGROUND

A network intrusion detection system (NIDS) is a device
that monitors network traffic passively and match packets
against rules. A NIDS detects malicious activities such as
unauthorized accesses, port scans, and denial of service (DoS)
attacks. Snort and Bro, popular open-source NIDSs based
on rules, are capable of analyzing packets and identifying
malicious attacks in real-time. If a suspicious behavior is
detected, they generate alert message. Since Snort is known
to perform better in previous experiments [4], we implement
our algorithm in Snort and compare it with the vanilla Snort.

A. Intrusion Detection in Snort

Snort uses a simple language to define rules to describe
network behaviors. Fig. 1 shows an example of a Snort rule.
Each rule consists of five mandatory fields and numerous
option fields. The mandatory fields include protocol type
(e.g., TCP, UDP), source/destination IP addresses and port
numbers, all of which are part of a packet header. Snort
interprets keywords enclosed in parentheses as “option fields”.
Commonly used option fields are “content”(Search the packet
payload for the a specified pattern),“msg” (Sets the message
to be sent when a packet generates an event) etc. For example,
a packet matches the mandatory fields of the rule in Fig. 1 if
it belongs to an established TCP stream from HOME_NET to
EXTERNAL_NET regardless of its port numbers (any). Once
such a packet is identified, its payload is searched for the
content string “Volume SerialNumber”. If a packet that
matches all the fields in the rule is detected, Snort generates a
message with a label “ATTACK-RESPONSES directory
listing”. HOME_NET and EXTERNAL_NET are variables
defined by the administrator, representing the IP address
prefixes of the local and external networks, respectively.

A straightforward way to check whether a packet matches
any of the rules is to search the rule database in a brute-
force manner: testing each rule against the packet one by
one. It is easy to implement but time-consuming. To reduce
the number of rules to examine, Snort builds a tree structure
called “rule tree” as shown in Fig. 2 to store and organize

RTN RTN

OTN OTN OTN OTN OTN

Fig. 2. A sample Rule Tree

all the rules. For each rule, the mandatory fields are stored
in a rule tree node (RTN) and the option fields are stored
in an option tree node (OTN). An OTN is associated with
the corresponding RTN. If there are multiple rules that have
the same mandatory fields, only a single RTN is created and
OTNs share it. The detection engine of Snort builds indices
for both source and destination port fields to allow fast access
to TCP and UDP rules. It then searches its indices using the
source and destination port numbers of each incoming packet
to identify matching rules. If matching rules are found in
the index structure, Snort performs string pattern matching
between the matched rules and the payload of the incoming
packet. If the string pattern matching is successful then all
the remaining mandatory fields (protocol type, e.g. TCP, UDP,
source/destination IP addresses) and optional conditions stored
in the rule tree are checked. Since the indices are based on
port numbers for TCP and UDP rules, the detection engine
performs string pattern matching and full comparison only
with a limited number of rules, which is critical for an IDS to
inspect packets at wire speed.

B. Performance Issues

The performance of an IDS depends on many factors in-
cluding the computational power of the machine, the network
load, and the size of the rule database. The computational
power and the network load are external factors, which an
IDS cannot control. On the other hand, efficient management
of the rule database is closely related to the internal structure
of the IDS. Snort adopts index structures for faster access
to the rule database. However, Dreger et al. [3] pointed out,
Snort (as well as another open-source IDS, Bro) exhausts
CPU time and memory as network speed increases. This result
raises a question: which function in IDS is the bottleneck? In
other words, which function consumes the most CPU time?
To find out the answer, we measure the CPU consumption of
each function in Snort. We compile Snort with the gprof [5]
option so that Snort outputs the CPU times consumed by the
called functions. We use two-week testing traces in 1998 and
1999 from the DARPA Intrusion Detection Evaluations [6]
to measure the CPU time consumptions. We find out that
string pattern matching is the most expensive operation in
Snort. We also measure the elapsed time between the entrance
and exit into the Snort detection engine. This measurement
reveals that Snort consumes up to 70% of total CPU time
in the detection engine. Therefore, reducing consumption of
CPU time in packet matching inside the detection engine is
critical for improving overall intrusion detection performance.

2
Authorized licensed use limited to: National Cheng Kung University. Downloaded on February 23,2010 at 08:39:03 EST from IEEE Xplore. Restrictions apply.

Snort trades memory for speed; it duplicates patterns of rules
in multiple locations in the index structures to deal with
wildcards. Some of Snort rules use a wildcard (any in Fig. 1)
in the port fields. Snort duplicates patterns of all these rules to
all the other indices so that Snort can find the matching rules
in O(1) time per packet. Pattern duplications cause Snort to
occupy a large amount of memory space to maintain all the set
of strings. As a result, the processing time for finding matching
rules against each packet increases because of memory access
latency incurred from large memory occupancy. When the
complete set of 8214 rules shipped with Snort are loaded,
Snort consumes about 38.2 MB with the default string pattern
matching algorithm, AC BNFA. Snort provides several string
pattern matching algorithms. These are AC BNFA, ACF, ACS,
ACB and ACSB. All of the algorithms are based on the Aho-
Corasick algorithm [7]. The memory consumption and the
speed for packet classification of each algorithm varies due to
implementation difference. For example, AC BNFA consumes
small amount of memory by sacrificing the speed of packet
processing.

The good part of pattern duplication is that Snort may
perform string pattern matching at most twice per packet.
Although our proposed algorithm may need to perform string
pattern matching multiple times against one packet, we claim
that our proposed approach is fast because it requires less
memory access due to no pattern duplication which allows
the whole rule set to be placed within cache.

III. HASH-BASED DETECTION ENGINE

The goal of Hash-Based Detection Engine (HBDE) is two-
fold: (i) to exclude rules that do not match a packet as early as
possible without performing full payload inspection, and (ii)
to reduce the amount of memory required to maintain the rule
database. The latter not only decreases memory consumption
but also improves speed because of the higher cache hit ratio.

A. Design of Hash-Based Detection Engine

In order to reduce the number of string pattern matching
over payload, Snort needs to check more protocol fields than
just port numbers so that Snort can reject more packets without
entering string pattern matching phase. The main issue of
the detection engine of Snort is that it duplicates patterns of
rules. To maintain them, a large amount of memory space
is consumed. If we can reduce the number of string pattern
matchings as well as the number of memory accesses to read
strings for such matchings, Snort will be able to deal with more
packets in real time. However, there is a trade-off between the
memory consumption by pattern duplication and the number
of string pattern matchings that Snort performs. If we remove
the pattern duplications, then the index structures will consume
less memory. However, Snort must perform string pattern
matching multiple times against each packet to cover all the
rules. Suppose that we check port numbers as an index to find
matching rules and patterns of each rule are not duplicated to
other indices. Consider a packet with source port is 1111 and
destination port is 80 arrives. Because of wildcards, we need to

try the following four combinations of source and destination
ports to find matching rules: (any, any), (1111, any), (any, 80),
and (1111, 80). Thus, if there are rules with such port pairs
in all four cases, Snort may need to perform string pattern
matching over payload four times. With pattern duplications,
however, rules with wildcards such as (any, any), (1111, any),
and (any, 80) are all duplicated with an index (1111, 80), and
thus only a single matching will be performed.

The time incurred in string pattern matching is dominated by
the number of memory accesses. Let’s consider two different
implementations of Snort: Snort with pattern duplications (PD)
and Snort without pattern duplications (NPD). In this scenario,
Snort uses port numbers as an index to find matching rules. In
the worst case, NPD performs string pattern matching four
times while PD performs only once. However, if the total
memory requirement for the former is low enough so that
we can keep whole working set in a cache, the additional
memory accesses will not result in poor performance. In fact,
it turns out to be faster. In our experiments, with a huge
number of packets to process, the overall performance gain
from PD to NPD is very high. The important point here
is that we use more protocol fields, in addition to the port
fields, to identify more packets as benign packets, especially
before performing string pattern matching over payload. Even
if Snort must perform string pattern matching, the total number
of actual memory accesses, or cache misses, without pattern
duplications would be smaller than with duplications because
of no pattern duplications. The key factor in determining which
additional protocol fields should be used depends on the fact
that how many rules we can exclude in matching phase by
examining those fields in a packet. Therefore, we first need to
analyze Snort rules.

B. Analysis of Snort Rules

Rule headers contain necessary protocol fields that every
rule must have and rule options contain a list of optional
information that is mainly used for administrative purposes.
If we use a protocol field in rule options, some rules may not
have such a field. Thus, the first criterion to add a new protocol
field is that all, or at least, most of the rules have that field.
Otherwise, even if we add the field, our algorithm may not be
able to exclude many rules by checking the newly-added field.
The second criterion is that how many rules on average can be
excluded by checking the newly added protocol field. In other
words, how uniformly the values of each new protocol field
are distributed. If a protocol field has three different values
and each of them is used by one thousand rules, Snort can
reject two-thirds of the rules by checking this protocol field.
If a protocol field has four different values and each value is
used by 750 rules, then Snort can reject more rules by checking
this protocol field. Ideally, our algorithm should check only a
small number of protocol fields, which can exclude most of
the rules. Table I shows the analysis of the complete set of
8214 rules.

Table I includes only the protocol types, the IP address
fields, the port fields, and the flow field. Rule headers consist

3
Authorized licensed use limited to: National Cheng Kung University. Downloaded on February 23,2010 at 08:39:03 EST from IEEE Xplore. Restrictions apply.

TABLE I
ANALYSIS OF 8214 INTRUSION DETECTION RULES

num of different values most frequently used values num of rules
TCP 7550

Protocol types 4 UDP 490
ICMP 135

IP 39
445 1574

$HTTP PORTS 1568
Destination port 314 any 1564

139 1464
$ORACLE PORTS 291

any 7056
Source port 196 $HTTP PORTS 737

1024 43
$HOME NET 5519

Destination IP 15 $EXTERNAL NET 1220
$HTTP SERVERS 959
$EXTERNAL NET 6952

Source IP 11 $HOME NET 1198
any 28

FROM CLIENT 6298
Flow 4 TO CLIENT 1182

STATELESS 35

of rule action (alert), protocol types (TCP, UDP), IP
addresses, port numbers, and direction operators (->). The
protocol fields that we can use from them are protocol types,
IP addresses, and port numbers. Rule action and the direction
operators are not related to packet classification. Rule options
consist of a variety of options such as content, flow, sid,
etc., and the protocol fields in rule options that are related to
packet classification are content and flow. Therefore, we select
protocol types, IP addresses, port numbers, content, and flow
for our algorithm.

The protocol type of most of the rules is TCP. The number
of TCP rules is 7550 out of 8214 and the ratio of TCP rules
in the whole rule set is about 92%. All of the TCP rules
have the flow field to describe the status of TCP stream.
The destination port field has many different values, and the
four most common values are used by about 1500 rules. The
rules that have one of these four values in the destination port
account for 75 % of all the rules. Although the source port field
has 196 different values, the value ANY accounts for about
86 % of all the rules. Contrary to port numbers, IP addresses
do not have many different values. The main reason is that
most of rules use variables, which start with “$” symbol, for
IP address fields because the values of source and destination
IP addresses vary depending on which network each end point
belongs to. Thus, it is difficult to write specific IP addresses
in the rules. On the other hand, applications typically use a
predefined port number to communicate with each other. Thus,
many distinct port numbers are used in the rules. The flow
field has only four different types, most of which are either
FROM_CLIENT or TO_CLIENT.

The question that now arises is how to utilize these protocol
fields in building a new detection engine. Since our detection
engine needs to check multiple protocol fields, it will take time
in searching for matching rules. The aim of building a new
detection engine is to handle a larger number of packets in real

time than Snort does. Thus, to find matching rules quickly is
also important.

C. Hash-Based Detection Engine

The goal of a new detection engine is to determine quickly
whether string pattern matching is necessary for a given
packet, assuming that there is no pattern duplication. In
order to handle multiple protocol fields at once, we introduce
hashing in our proposed detection engine. We propose a Hash
function that converts a string consisting of the values in those
protocol fields into a fixed-length numerical value. At first,
HBDE computes a hash value against each rule using selected
protocol fields. To do this, first HBDE generates 18-bit-long
hash value from source, destination port and flow status. Then
HBDE uses source and destination IP addresses to generates
16-bit-long hash value. Finally, HBDE uses both 18-bit-long
hash value and 16-bit-long hash value to generate 32-bit-
long hash value which is then stored in the hash table. In
our experiment, hash collision does not occur with complete
set of rule sets. If collision occurs, two rules that should
have different hash values share the same hash value. The
disadvantage of hash collision is that HBDE has to read extra
“pattern” to examine the packet. When a packet arrives, HBDE
generates a hash value using selected protocol fields from the
packet header. Then HBDE searches the hash table to check
whether there is any matching hash value exists in the table.
Note that once HBDE computes a hash value for a given input,
it can immediately determine whether it needs to perform
string pattern matching against the packet or not.

IV. EXPERIMENTAL RESULTS

We implement HBDE in Snort 2.8.0. We use two-week
testing traces in 1998 and 1999 from the DARPA Intrusion De-
tection Evaluations [6] for performance comparison between
HBDE and the original detection engine of Snort. We use a

4
Authorized licensed use limited to: National Cheng Kung University. Downloaded on February 23,2010 at 08:39:03 EST from IEEE Xplore. Restrictions apply.

testbed to carryout the comparison study. The Linux (2.6.15)
testbed machine is equipped with a 3.00 GHz processor and 3
GB memory. We use the default configuration for both HBDE
and Vanilla Snort. The experiments were repeated twenty times
with each data set. The testbed machine reads each data set
from the hard disk at the first run, but from the second run
the content of the data set should be available in the disk
cache. Therefore, we ignore the result of the first experiment
to mitigate the effect of disk cache misses.

A. Comparison of Initialization Time and Memory Consump-
tion

We conduct the first experiment to measure initialization
time. During the initialization phase, Snort reads all the rules
from the ruleset, parses each rule by protocol fields (e.g. TCP,
UDP), stores the parsed protocol fields into RTN and OTN,
and builds a rule tree and a detection engine. HBDE builds
the hash table instead of the detection engine.

Fig. 3 shows the comparison of initialization time and
memory consumption to maintain a set of strings using the
complete set of 8214 rules. The default string pattern matching
algorithm in Snort 2.8.0 is AC BNFA. Prior to Snort 2.8.0,
the default algorithm was ACF. Fig. 3(left) shows that HBDE
consumes considerably less memory in all cases than snort
does. This is because that there is no pattern duplication in
HBDE while Snort duplicates the patterns of rules in the index
structures. Due to the requirement of large amount of memory
for maintaining the rule data set, Snort spends more time in
initialization phase.

B. Packet-Processing Time

We conduct the second experiment to compare the packet-
processing time of HBDE with that of Snort using AC BNFA
and ACF. Fig. 4(a) shows the comparison of packet-processing
time in the case of AC BNFA. The graph is plotted based
on the pair of the processing time of HBDE and Snort. The
diagonal line represents the points where the processing time
of HBDE and Snort are equal. In other words, the points
plotted above the line indicate that Snort is faster than HBDE
and the points plotted below the line indicate that HBDE
is faster. In Fig. 4(a), there are some points above the line
which implies that Snort is faster than HBDE with some of
the data sets. However, Even if Snort is faster than HBDE in
those cases, since the distances between each point (above the
diagonal line) and the diagonal line are short, the processing
time between HBDE and Snort does not differ significantly.
Comparatively, there are many points below the line plotted far
apart from the diagonal. This clearly indicates that although
Snort is faster in some few cases, HBDE performs better
overall.

The reason that sometimes HBDE is slower than Snort is
because that HBDE performs multiple string pattern matchings
for a single packet which causes memory accesses. Although
we expect that the low memory requirement in HBDE will
allow the whole working set to accommodate in a cache, it may
not be the case from time to time. Another important point to

note is that if Snort uses AC BNFA algorithm, Snort does not
consume much memory space even if the complete set of 8214
rules is included as shown in Fig. 3 (left). Therefore, because
of the small difference in memory consumption between
HBDE and Snort, HBDE does not perform better in some
data sets.

We also compare the processing time of Snort with HBDE
using ACF. Fig. 4 (b) shows that the results are quite similar
to Fig. 4(a). However, the number of points above the diagonal
line is reduced and the overall performance of HBDE is better
than that of Snort.

Fig. 3(left) shows that Snort with AC BNFA consumes only
38 MB memory and Snort with ACF consumes more than
1 GB memory. On the other hand, HBDE using AC BNFA
consumes about 3 MB memory and HBDE using ACF only
consumes about 70 MB memory. The question that arises from
this results is that if the memory consumption of Snort and
HBDE are similar then how it is possible that theie packet-
processing times are different. Therefore, we are interested
to find out whether memory consumption affects the packet-
processing time of Snort and HBDE at all. In order to find
the answer to this question, we use Snort with AC BNFA
and HBDE with ACF since their memory consumptions are
similar. Fig. 4 (c) shows that there are still some points
above the diagonal line, but in the most of the cases, the
packet-processing time of HBDE is faster than that of Snort.
Therefore, it is clear that although the memory consumption
of Snort and HBDE is similar, HBDE performs better.

V. RELATED WORK

This section briefly reviews existing work to improve overall
performance of intrusion detection. Most of the work have fo-
cused on the most time-consuming part of intrusion detection
system, i.e., string pattern matching.

Researchers have proposed many string pattern matching
algorithms for fast and efficient string pattern matching. One
approach is based on software implementation [7]–[9]. The
Aho-Corasick algorithm [7], implemented in Snort, matches a
set of substrings against the payload of packets in O(n). Wu-
Manber [9] performs string pattern matching efficiently using
multi-pattern optimization. The other approaches are based on
hardware [10]–[12]. Although [10] used hashing, their work
differs from ours because they used hashing of content string
and our method use hashing of protocol fields. Some of the
hardware implementations use FPGA to build a DFA/NFA and
reprogram it whenever the pattern is changed. Sommar and
Paxson used regular expressions for Bro and built a DFA [13]
to enable users write rules more flexibly. They noticed that
DFA may consume too much memory so Bro computes a new
state in DFA whenever the DFA needs to transit into the state
and the states that are not transited are removed to maintain
the overall memory size small.

Another proposed approach takes traffic patterns into con-
sideration. Most of string pattern matching algorithm are
independent of traffic pattern and may end up with longer

5
Authorized licensed use limited to: National Cheng Kung University. Downloaded on February 23,2010 at 08:39:03 EST from IEEE Xplore. Restrictions apply.

Memory consumption (MB)

38.2

1086.3

503.3

702
586

18.831.717.42.8 70.71

0

200

400

600

800

1000

1200

AC_BNFA ACF ACS ACB ACSB

Snort

HBDE

Initialization time (seconds)

9.5

113 114.8 114.2 112.8

4.8 4.84.94.81.4
0

20

40

60

80

100

120

140

AC_BNFA ACF ACS ACB ACSB

Snort

HBDE

Fig. 3. Comparison of memory consumption (left) and initialization time (right) in different string pattern matching algorithms

 1

 10

 100

 1 10 100

P
ro

ce
ss

in
g

tim
e

by
 H

B
D

E

Processing time by Snort

(a) AC BNFA

 1

 10

 100

 1 10 100
P

ro
ce

ss
in

g
tim

e
by

 H
B

D
E

Processing time by Snort

(b) ACF

 1

 10

 100

 1 10 100

P
ro

ce
ss

in
g

tim
e

by
 H

B
D

E

Processing time by Snort

(c) ACF and AC BNFA

Fig. 4. Comparison of packet-processing time with different string pattern matching algorithm: Snort Vs. HBDE

matching time depending on actual traffic. WIND [4] im-
plements workload-aware intrusion detection system. In this
approach, an IDS collects the current traffics for a period of
time, and then builds a rule tree based on the collected data.
This approach improves the performance of Snort up to 1.6
times.

The contribution of our paper is to build a Hash-Based
Detection Engine (HBDE) which can exclude rules that don’t
match a packet as early as possible without performing full
payload inspection (fast packet classification) and reduces the
amount of memory required to maintain the rule database
(overall less memory consumption).

VI. CONCLUSION

The aim of building a rule tree is to reduce the number of
rules that Snort must examine against each packet. However,
the current detection engine is designed to duplicate patterns of
rules to find a matching rule in O(1). We propose rule hashing
for fast packet classification with no pattern duplications. Rule
hashing generates hash values using five protocol fields and
stores them in the hash table. Instead of pattern duplications,
our approach searches for the matching rules multiple times to
cover all the rules against each packet. The amount of memory
consumed by each index or hash value to maintain a set of
finite strings and the time for searching for matching rules are
the trade-off. Our approach saves memory space and reduces
the number of memory access. However, our approach may
perform string pattern matching multiple times against each
packet. But this will not affect the overall performance of
IDS because we expect that the low memory requirement
in our approach will allow the whole working set to be
accommodated in a cache in most of the time.

The experimental results show that the overall performance
of packet processing of HBDE is better than the default

detection engine of Snort using both string pattern matching
algorithms AC BNFA and ACF. Memory consumption for
string pattern matching in HBDE is considerably less than
the default detection engine of Snort in case of all the
string pattern matching algorithms. The reason of such a less
memory consumption is because of no pattern duplications.

REFERENCES

[1] M. Roesch, “Snort - lightweight intrusion detection for networks,” in
Proc. of the 13th USENIX Conf. on System Administration, Nov. 1999.

[2] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer Networks, vol. 31, no. 23, Dec. 1999.

[3] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Operational
experiences with high-volume network intrusion detection,” in Proc. of
the 11th ACM Conference on Computer and Comm. Security, Oct. 2004.

[4] S. Sinha, F. Jahanian, and J. Patel, “WIND: Workload-Aware INtrusion
Detection,” in Proc. of Recent Advances in Intrusion Det., Sep. 2006.

[5] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call
grph execution profiler,” in Proc. of the 1982 SIGPLAN symposium on
Compiler construction, 1982.

[6] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999
DARPA off-line intrusion detection evaluation,” Computer Networks,
vol. 34, no. 4, pp. 579–595, Oct. 2000.

[7] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Comm. of the ACM, vol. 18, no. 6, Jun. 1975.

[8] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Comm.
of the ACM, vol. 20, no. 10, Oct. 1977.

[9] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
University of Arizona, Tech. Rep., 1994.

[10] R.-T. Liu, N.-F. Huang, C.-H. Chen, and C.-N. Kao, “A fast string-
matching algorithm for network processor-based intrusion detection
system,” ACM Trans. on Embedded Computing Systems, vol. 3, no. 3,
Aug. 2004.

[11] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and
V. Hogsett, “Granidt: Towards gigabit rate network intrusion detection
technology,” in Proc. of the 12th International Conference on Field-
Programmable Logic and Applications, Sep. 2002.

[12] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network intru-
sion detection with reconfigurable hardware,” in Proc. of 10th Annual
IEEE Symp. on Field-Programmable Custom Comp. Machines, Apr. 02.

[13] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion
detection signarures with context,” in Proc. of the 10th ACM Conference
on Computer and Comm. Security, Oct. 2003.

6
Authorized licensed use limited to: National Cheng Kung University. Downloaded on February 23,2010 at 08:39:03 EST from IEEE Xplore. Restrictions apply.

